12+12V and 12+48V: a modular approach for components and electric architectures

Author: Dr. Coppin Olivier
Further Information about the author

Among the various hybridization levels, the 12+12 volts affordable architecture represents the basic architecture allowing the benefits of hybridization, thanks to the energy recovery during braking. The 12+48V electrical architecture is an easy way to enhance 12+12V functionalities and enter deeper in the hybrid application field. With the extended power field offer by 48V components, more vehicle segments and applications can have more benefits at a still limited over cost. We will illustrate the similar topology of 12+12V and 12V+48V systems and show how complementary functions such as electric supercharger boosting can be added in a modular way. This approach can help to lower the cost of the systems integration in vehicle which can be a significant part of the total system application cost. This can thus contribute to a large application field for mild hybrid systems and by the way contribute to a greater vehicle fleet CO2 reduction. The main hybrid functions impacts on engine emission will be presented. We examine how 48V system can address more efficient hybridization architectures (from P1 to P4) allowing more CO2 emission reduction and see how we can even open the gateway for low cost pure electrical vehicles. We then show how the different hybridization architectures can be addressed in a modular building bloc structure for components. This last level of modularity is an additional lever to lower the hybridization cost. Combining the electrical board net modular predisposition and the field of 48V hybridization would open ways to access further CO2 emission reduction with the best cost ratio. At the end, we will build the general road map of 48V hybridization systems and future vehicle functions.