Power electronics

Author: M.Sc. Ajay Poonjal Pai
Co-authors: Dr. Tomas Reiter, Prof. Martin März
Further Information about the author

This paper evaluates the benefits of replacing the Si diodes of a commercial IGBT module for the main inverter application of an electric vehicle with SiC diodes, leaving the other components of the package and the system unchanged. This will give a direct comparison of Si vs SiC, without giving scope for discrepancies arising out of differences in the packaging, gate-driver circuit etc. The IGBT-module chosen for comparison is a low inductance (8nH) HybridPACK Drive module from Infineon, suitable for very high speed switching. The focus of the comparison is the following:  Static and dynamic characterization of the Si and hybrid-SiC modules.  Development of a loss model for the modules based on the above measurements.  Application of the developed loss model to investigate the performance for various drive cycles (Artemis, WLTP, NEDC).  Development of a novel calorimetric loss measurement setup for experimental verification of the results. Motivation Papers that address the topic of SiC for automotive main inverters often have one or more of the following drawbacks: The considered devices are rated for low currents, quite far from the typical application requirements of the main inverter The devices/packages chosen are prototypes, which do not face the same constraints a mass product would. The compared Si and SiC chips are in completely different packages or application conditions In short, a clear investigation of the benefits of using SiC as a plug-and-play replacement for a commercial Si-IGBT module is still missing in literature. This gap is attempted to be filled by the paper Results Fig. 1 shows an IGBT-diode pair of the compared HybridPack Drive module with Si diodes (the module will be referred to as “HPD”) and SiC diodes (the module will be referred to as “HPD-Hyb-SiC”) respectively. Static losses are measured with a curve tracer and the switching energies of both the modules are measured in a double pulse test setup (see Fig. 3). The SiC diodes help reduce E_on and E_rec by around 25% and 75% respectively. A loss model is derived based on these measurements and this model is used to calculate the inverter losses for Artemis, NEDC and WLTP drive cycles. As seen in Fig. 3, HPD-Hyb-SiC offers more than 10% reduction in losses for all the drive cycles. The Artemis Urban cycle with a reduction of around 20% losses sees the most benefit of using SiC diodes. Also, the inverter losses at different rms currents and dc-link voltages are measured in a novel calorimetric setup (see Fig. 2) introduced in the paper and the results are summarized in Fig. 3. It can be seen that there is no benefit of using the SiC diodes at V_dc=100V. At V_dc=300V, the benefits of SiC become prominent and this gap widens as we increase V_dc, and at V_dc=400V, 75A, we can see a reduction of around 7% in the overall losses. Also, the simulated losses are found to be in good agreement with the measured losses, thereby validating the loss model.

Author: Uwe Beher
Further Information about the author

Neuartige auf dem Markt verfügbare Leistungshalbleiter ermöglichen aufgrund der geringen Schalt- und Bahnverluste neuartige Ansätze für das Design von DCDC-Wandlern für Batteriespeicher. Hierzu zählen insbesondere GaN-Transistoren, die mit den Nennspannungen von 100V und 600V im Fahrzeug sowohl auf der Hochvolt- als auf der Niedervoltebene ein-gesetzt werden können. Dies ermöglicht Designs sowohl für Traktions- als auch für Boost-Anwendungen von Batteriespeichern. Diese Designs beinhalten eine galvanische Trennung und eine Stabilisierung des Zwischenkreises, die über die Steuerfähigkeit der eingesetzten Schalttopologien erreicht wird. Beides führt zusammen zu einen zu einer Vereinfachung der Leistungsverteilung und des Energiemanagements, und zum anderen zu der kostengünstigen Gestaltung von Leistungs-Verbrauchern und Traktionseinheiten. Außerdem können GaN-Transistoren gemeinsam in die Kühlung von passiven Bauelementen integriert werden, was zusätzlich den mechanischen Aufwand für eine Leistungselektronik verringert. Diese Rahmenbedingungen ermöglichen neuartige Gestaltungsmöglichkeiten von Energiespeichern und die Verteilung von elektrischer Leistung innerhalb eines Fahrzeuges. Der Vortrag wird eine Beispielsumsetzung für einen DC/DC-Wandler aufzeigen, der eine mit Niedervolt betriebene Batterie mit einem Hochvolt-Traktionskreis verbindet. Er wird aufzeigen, welchen Einfluss dies im genannten Beispiel auf die Gestaltung des Energiebordnetzes hat und wie sich das auf einen angeschlossenen elektrischen Antrieb auswirkt.

Author: Dr. Martin Ferch
Further informationen about the author

Due to a unique combination of excellent soft magnetic properties, nanocrystalline materials became increasingly important in numerous electrical power applications in the last decade. The main reason for that is, that they meet the requirements of todays and tomorrows advanced power electronic systems far better than any other soft magnetic material. Those requirements are: higher efficiency, lighter, smaller and smarter and finally more reliable in high temperature operation. Since many years, nanocrystalline cores and chokes providing EMI and bearing protection in inverter systems for energy conversion, generation, and distribution. The most recent big and dynamically emerging field of application for nanocrystalline inductive components appears to be the upcoming electro mobility. In no other known application than the electrical vehicle PHEV or BEV, such an aggressive source of unwanted high frequency EMI noise like a drive inverter is operating so closely together with an ultra sensitive computer controlled self-driving system. Literally “fire and ice” in a tin can! This extreme scenario asks for solid solutions without any trade-off – in particular, when the next generation of semiconductors GaN and SiC will replace state-of-the-art Silicon devices. For decades in the past, common mode EMI/EMC filter chokes were solely equipped with Ferrite cores. Due to their significantly higher permeability, nanocrystalline filter components reduce weight, size and power loss significantly – typically by 50% compared to Ferrites. Furthermore, nanocrystalline cores withstand much higher working temperatures as they are requested in the automotive application. The lecture will cover a comparison of EMI related soft magnetic properties between nanocrystalline materials and Ferrites as well as some inverter related established application examples and finally come to the concrete fields of application onboard of the electrical vehicles PHEV and BEV.